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STABILITY MEASURES FOR SPECTRAL ANALYSIS USIN G
DISCRETE SAMPLING WITH THE KAISER-BESSEL
OR DOLPH-CHEBYSHEV WINDOW

1. INTRODUCTION

Power spectral estimation from a sample of a stationary random process
has important detection and estimation applications in sonar. Consequently,
we would like to obtain as accurate an estimate as possible (accurate meaning
that the estimator has a low standard deviation relative to its mean). This
- measure of estimator reliability is known as stability; ideally then, we would
like an estimate that is as stable as possible, given a finite sample of data.

The power spectrum estimator examined in this study is the standard
overlapped fast Fourier transform (FFT) processor. With this method, a slid-
ing weight function is applied multiplicatively to the data. The magnitude-
squared FFTs of each weighted data segment are then summed to form the
overall estimate.

The Kaiser-Bessel and Dolph-Chebyshev functions are used for the slid-
ing weight. The Kaiser-Bessel window is characterized by a free parame-
ter B8 that controls the peak sidelobe level and mainlobe width; the Dolph-
Chebyshev window has the narrowest main lobe for a given peak sidelobe
level. Both windows are thoroughly discussed in the classic Harris paper.!

Our primary objective is to determine the most stable estimate that can
be obtained with the two different weightings; that is, what values of overlap
(85, 90, 98 percent, etc.) will yield the highest stability measure? Rules of
thumb are developed for establishing the optimal amount of overlap, based
upon the two windows and their peak sidelobe levels. Moreover, since a 50-
percent overlap is often used in practice, we derive the exact performance
of this particular choice of processing (in terms of stability) relative to the
optimum percentage overlap.

At the conclusion of this investigation, we find that although a 50-
percent overlap is usually suboptimal, it often yields near-optimal stability.
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2. DEFINITION AND INTERPRETATION OF
EQUIVALENT DEGREES OF FREEDOM

Suppose that we have a set of J statistically independent, zero-mean Gaus-
sian random variables {g,} of common unknown power o2, which we wish to esti-
mate. The best that we can do in this case is to compute the power estimate

J

o g;. (1)

Il

~l =

2
e

1l
—

J
This quantity o2 is an unbiased estimate of o since its mean, Av{e2}, is obviously

o2, the desired quantity. At the same time, since variances of independent random
variables add, the variance of the power estimate is

Var{o?} = %Var{gf} : (2)

And, since the fourth moment of Gaussian random variable g;is 304, the quantity
in equation (2) is simply
2 4
Var{o?l} = =, (3)
which decays with J, the number of independent samples available. Naturally, we
want J to be as large as possible, in order that the variance of the estimate o2 be
at a minimum.

Now consider the quality measure of estimate o2, defined as the equivalent
degrees of freedom,? namely,

2Av {02} 2(c®)° _
Var{o?} = 20%/J

where we have used equation (3). This ratio gives exactly the number of statistically
independent samples available in the original data set {gj}. Therefore, it is natural
and useful to consider extending the EDF definition in equation (4) to an arbitrary
random variable v (formed perhaps as a sum of partially dependent random vari-
ables) as a measure of the effective number of independent contributors to v. That
is, we define, in general,

2 Av*{v}
Var{v} (5)

EDF =

J, (4)

EDF =




for random variable v. This statistic is attractive in that it only requires the cal-
culation of the two lowest moments of v. (If the mean of v is zero, the definition
in equation (5) will have to be discarded; it is most meaningful when apphed to
estimates of power quantities, which are inherently positive.)

If random variable v depends on some parameter X, a search can be con-
ducted on that parameter in an effort to maximize EDF, that is, minimize the
standard deviation of v relative to its mean. In this way, the relative stability of
estimate v can be optimized, subject, of course, to whatever constraints might have
to be imposed on parameter X due to practical limitations.



3. STABILITY OF OVERLAP SPECTRAL
ANALYSIS FOR DISCRETE SAMPLING

Stationary random process x(t) has correlation function R,(7) = z(t)x (¢t — 7)
and (double-sided) power density spectrum G,(f). This process z(t) is sampled at
increments of A seconds, where A should be chosen small enough to keep spectral
aliasing under control; if not, we shall be estimating an excessively aliased spectrum
instead of G(f).* The data samples available are z(0), z(A),... ,z((T — 1)A), for
a total of T samples.

The total data record of T samples is broken up into segments of size N,
which need not be a power of 2. Furthermore, these segments may overlap in time,
thereby resulting in some data samples being processed in multiple segments. In
addition, each data segment is weighted multiplicatively with a set of (delayed)
coefficients, w(0),w(1),... ,w(N — 1), prior to being Fourier transformed, in order
to control the sidelobe behavior of the windowed Fourier transform W (f) associated
with the set of weights. That is, window

N-1

W(f) = Zw(n) exp(—i2nfAn) forall f, (6)

n=0

which has period 1/A in frequency f.

The segmenting and weighting procedure applied to the available data is
illustrated in figures 1 and 2. The total number of pieces averaged in obtaining the
power density spectrum estimate is P, which can vary over a wide range (under
our control). The pth piece of weighted data is subjected to the (integer) shift S,
where 1 < p < P. In particular, we will choose $; = 0, in order to cover the first
data sample 2(0). Also, we will choose Sp =T — N, so that the last data segment
covers the last available data sample z((T" — 1)A). Figure 1 shows the case where
the data segments do not overlap; figure 2 shows the case where the data segments
do overlap because a large number of segments (large P) have been used. Note
also from figure 2 that all the data points may not be used, depending upon the
relationship between N, T, and P.

*This requirement for the sampling rate A is equivalent to the Nyquist sampling requirement
in the frequency domain.
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Figure 2. Weighted and Overlapped Data Segments (Overlapping Case)

In order to maximize the stability (minimize the variance) of the spectral
estimate, we want to separate the P individual data segments as much as possible;
that is, we want to minimize the amount of overlap of the individual segments. We
accomplish this by first defining the (noninteger) quantity

T—-N
SC P _ 1 b ( )
multiples of this shift would result in all the P segments being equally spaced.
However, since S, and its multiples are not integers, we will adopt the closest integer

spacing for the shifts {S,} according to the rule

Sp=[lp-1)S.] for1<p<P, (8)
where [v] denotes the closest rounded integer to v. As special cases, we have S; =0
and S p = T—N. '

For arbitrary analysis frequency fi, the pth voltage density estimate (using
weighted sampled overlapped data) is defined as the complex quantity

Y,(fr) =) _@(nA)w(n—S,) exp(—i2nfinld) for 1 <p< P; 9)

n



the limited nonzero range of the weights, w(0) to w(N — 1), will automatically
terminate the infinite summation in equation (9) at limits S, to S, + N — 1, as
shown in figure 1. (If we choose to take fi = k/(KA), where K is a power of 2,
then equation (9) can be accomplished as a K-point FFT. Also, FFT size K can be
chosen larger than segment length N1 to realize interpolated values of the spectral
estimate at frequency increment (KA)™" of specified fineness.)

The power density spectrum estimate at frequency f; is now derived from
equation (9) as the finite average

P
Y (5 =5 3 lu, () (10)

We are interested in the mean and standard deviation of random variable Y (f3)
and, in particular, in the stability measure known as the EDF, namely,

2AV{Y (fx)}

EDF = Var(Y (fo)}

(11)

For given values of T" and N, the value of EDF will depend on P, the number
of pieces in figure 1 and in the estimate of equation (10). We wish to make EDF
as large as possible to minimize the variance and yet maintain P within reasonable
bounds. Too small a value of P results in incomplete use of the available data; see
figure 1 for an illustration of the nonoverlapping case. On the other hand, too large
a value of P results in excessive overlap and an attendant amount of unnecessary
calculations with little additional reduction in variance. The average fractional
overlap (FO) of the segments is available from equation (7) as

N-8, Se
FO:max( N ,0)-—max(1——]\7,0). (12)

For example, assume that T = 1024 total data points and that the data
segments consist of N = 128 data points. If P = 8 segments were desired, then
Se = (1024 — 128)/(8 — 1) = 896/7 = 128 from equation (7) and FO = 0 from
equation (12). This result clearly shows that P = 8 segments of 128 points each

"The additional K — N data points all have zero value; this procedure is known as zero padding.




can be obtained from 1024 total points without any overlap. If P is now changed
from 8 to 16, then S, becomes 896/15 =~ 59.67, and FO becomes 0.53, since with
16 pieces of 128 points each, there must be overlap if there are only 1024 total data
points available.}

The EDF is evaluated in appendix A, with the result that

2
EDF = 2P (13)

P
¢w5 S
2,

where ¢,,(m), the autocorrelation of the weight sequence, is

= Zw(n) w(n —m) forall m. (14)

This sequence, {¢,(m)}, is zero for |m| > N, since {w(n)} is of length N. Shifts
{S,} are available from equations (7) and (8) for each choice of P.

The detailed spectrum G(f) of random process z(t) does not appear in the
end result for the EDF in equation (13), nor does the particular analysis frequency
fx- The reason for this behavior is our presumption that the magnitude-squared
window [W(f)|? has a mainlobe width which is narrower than the detail in the
spectrum G.(f) in the neighborhood of fi and that the sidelobes of the window
W (f) in equation (6) are rather small.5 Both these properties can be achieved by
the selection of a large enough segment duration, NA, and by the use of windows,
W (f), with good sidelobes, such as can be achieved from the Kaiser-Bessel or Dolph-
Chebyshev weightings {w(n)}.

We can now concentrate on maximizing the quality ratio EDF in equa-
tion (13) by the choice of the number of pieces P, knowing that this will minimize
the standard deviation of the spectral estimate Y (f;) relative to its mean value.

't must be noted that the amount of FO available in actual sonar systems is often restricted
to values such as 0.5, 0.75, and 0.875. Thus, an FO of 0.53, as discussed in the last example, may not be
possible in practice.

$This is a reasonable assumption for practical FFT spectral estimation processes.




4. RULES OF THUMB

The following tables show the optimum overlap for maximizing stability mea-
sure EDF and indicate what fraction of this maximal amount is achieved for 50-
percent overlap. From these tables, it can be seen that the following rules of thumb
apply.

First, tables 1 and 2 show in the fifth column that the optimum overlap
required to achieve maximum EDF is directly affected by the desired sidelobe level,
data length T, and segment size N. As the sidelobe level decreases, the amount of
overlap required for maximum EDF increases. These two tables also indicate (see
the eighth column) that for both the Dolph-Chebyshev and Kaiser-Bessel windows,
50-percent overlap provides near optimum EDF, especially for shallower sidelobe
levels (selectable by the parameter S for Kaiser-Bessel).

Figures 3 through 6 also illustrate a rule of thumb, which relates to how
the EDF changes as a function of overlap for the Kaiser-Bessel weightings and four
different peak sidelobe levels. For example, figure 4 shows EDF as a function of the
number of pieces (sections) for a Kaiser-Bessel window designed for a -40 dB peak
sidelobe level with T' = 1024 and N = 128. For this example, the maximum EDF
value of 29.42 is attained at FO = 0.632 (20 sections). The EDF value at 50-percent
overlap is 27.82, resulting in a loss of only 5.4 percent relative to the maximum EDF
value obtained at the optimal overlap. It is obvious that once the knee of the curve
has been attained, further increases in the fractional overlap have little effect on
improving EDF (i.e., obtaining better spectral estimates).

Another general rule can be summarized as follows: for a given N and T,
EDF increases with deeper sidelobe levels. Thus, we expect a larger value of EDF
for a peak sidelobe level of -60 dB than for a peak sidelobe level of -30 dB. The
validity of this last statement can be verified by examination of tables 1 and 2.

It is helpful to have a simple rule of thumb to obtain the maximum value
of EDF that can be realized for the two windows considered here. Accordingly, we
have extracted the following approximation from the examples in tables 1 and 2.
It is based upon reference 3 and is a function of the ratio T/N, namely, the ratio
of the total number of data points to the length of the segments employed. It was
obtained by fitting the empirical examples in tables 1 and 2 by a straight line in the




Table 1. Optimum OQwverlap, Mazximum EDF, and EDF Attainable at
50-Percent Querlap for Kaiser-Bessel Weighting

SLL Optimum | Max | Max EDF | Fraction at
dB)| T | N |T/N| Overlap | EDF | T/N | 50% Overlap
-30 | 512 | 128 4 0.57 12.2 3.05 0.99
-30 | 1024 | 128 8 0.59 26.1 3.26 0.99
-30 | 2048 | 128 16 0.61 53.8 3.36 0.98
=30 | 2048 | 256 8 0.59 26.0 3.25 0.99
-30 | 4096 | 128 32 0.62 109.2 341 0.98
-30 | 8192 | 1024 8 0.59 25.9 3.24 0.99
-40 512 | 128 4 0.63 13.7 3.42 0.96
-40 | 1024 | 128 8 0.63 294 3.68 0.95
-40 | 2048 | 128 16 0.66 61.0 3.81 0.94
-40 | 2048 | 256 8 0.63 29.3 3.67 0.95
-40 | 4096 | 128 32 0.67 124.1 3.88 0.94
-40 | 8192 | 1024 8 0.63 29.3 3.66 0.95
-50 512 | 128 4 0.67 14.9 3.73 0.91
-50 | 1024 | 128 8 0.68 32.3 4.04 0.89
-50 | 2048 | 128 16 0.69 67.2 4.20 0.89
-50 | 2048 | 256 8 0.68 32.2 4.03 0.90
-50 | 4096 | 128 32 0.71 137.0 4.28 0.88
-50 | 8192 | 1024 8 0.68 32.1 4.02 0.90
-60 512 | 128 4 0.70 16.0 4.01 0.86
-60 | 1024 | 128 8 0.71 34.9 4.37 0.84
-60 | 2048 | 128 16 0.73 72.8 4.55 0.84
-60 | 2048 | 256 8 0.71 34.8 4.35 0.85
-60 | 4096 | 128 32 0.74 148.6 4.64 0.83
-60 | 8192 | 1024 8 0.71 34.7 4.34 0.85
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Table 2. Optimum Overlap, Mazimum EDF, and EDF Attainable at
50-Percent Overlap for Dolph-Chebyshev Weighting

SLL Optimum | Max | Max EDF | Fraction at
dB)| T N |T/N | Overlap | EDF T/N 50% Overlap
-30 512 | 128 4 0.57 12.2 3.1 0.99
-40 | 1024 | 128 8 0.59 26.4 3.3 0.98
-40 | 8192|1024 8 0.88 27.0 34 0.96
-40 | 2048 | 128 16 0.63 54.4 34 0.98
-40 | 16384 | 1024 16 0.84 54.5 3.4 0.95
-40 4096 | 128 32 0.65 110.6 3.5 0.98
-40 | 32768 | 1024 | 32 0.74 114.0 3.6 0.95
-50 | 1024 | 128 8 0.63 29.1 3.6 0.95
-50 2048 | 128 16 0.66 60.3 3.8 0.95
-50 | 4096 | 128 32 0.67 122.7 3.8 0.94
-50 | 2048 | 256 8 0.63 29.0 3.6 0.95
-50 2048 | 512 4 0.63 13.5 34 0.96
-50 | 8192 | 1024 8 0.63 29.0 3.6 0.95
-50 2048 | 128 16 0.66 60.3 3.8 0.95
-50 | 16384 | 1024 16 0.66 60.0 3.8 0.95
-50 | 4096 | 128 | 32 0.67 122.7 3.8 0.94
-50 | 32768 | 1024 32 0.68 122.1 3.8 0.94
-60 | 1024 | 128 8 0.67 31.6 4.0 0.91
-60 8192 | 1024 8 0.67 314 3.9 0.91
-60 2048 | 128 16 0.69 65.7 4.1 0.90
-60 | 16384 | 1024 16 0.69 65.3 4.1 0.90
-60 4096 | 128 32 0.70 133.9 4.2 0.90
-60 | 32768 | 1024 | 32 0.70 133.1 4.2 0.90
-70 1024 | 128 8 0.70 34.0 4.3 0.86
-70 | 8192|1024 8 0.70 33.8 4.2 0.87
-70 2048 | 128 16 0.711 70.7 44 0.86
-70 | 16384 | 1024 16 0.71 70.3 44 0.86
-70 4096 | 128 32 0.73 144.2 4.5 0.85
-70 | 32768 | 1024 | 32 0.72 1434 4.5 0.86
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ratio T/N. We find that

max EDF = (% — 0) n, (15)

where 7 and 6 depend on the type of window and the decibel sidelobe level according
to tables 3 and 4. This rather accurate approximation has been verified by examples.

Table 3. Values of n and 6 in the Approzimation of Mazimum EDF by
(% — 6) n for the Kaiser-Bessel Weights

Sidelobe | Values of | Values of
Level (dB) n 6
-40 3.93 0.54
-50 4.35 0.59
-60 4.72 0.63
-70 5.07 0.67

Table 4. Values of n and 0 in the Approzimation of Mazimum EDF by
(£ — 6) n for the Dolph-Chebyshev Weights

Sidelobe | Values of | Values of
Level (dB) n 6
-40 3.51 0.49
-50 3.89 0.54
-60 4.25 0.58
-70 4.58 0.61

14




5. SUMMARY

In this report, we have investigated how to determine the optimal amount
of data overlap to produce spectral estimates of maximum stability. For the two
types of spectral windows examined, namely, Kaiser-Bessel and Dolph-Chebyshev,
the optimal amount of overlap varied from 59 to 93 percent and depended greatly on
the ratio T//N, the ratio of the total number of data points available to the number
of data points in a segment. In spite of this dependency, it was shown through
extensive computation that a 50-percent overlap results in a loss of stability (as
measured by the EDF value) of only 1 to 15 percent, with the loss frequently less
than 10 percent.
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APPENDIX A
DERIVATION OF MEAN AND VARIANCE

The power density spectrum estimate is given by equation (10) in conjunc-
tion with equation (9). For later use, the crosscorrelation of two different spectral
estimates at general analysis frequency f is given by the complex ensemble average

Cpq = yp(fk)yZ(fk)
= ZZm(nA)m*(mA) w(n — Sp) w*(m — Sy) exp [—i2m feA(n — m)] ,

where we have allowed for complex processes x(t) and complex weights {w(n)}.
When we express correlation R;(nA—mA) in equation (A-1) in terms of its spectrum
Gz(f) according to a Fourier transform, the average becomes

Cpq = / df G(f) Z exp (i2m fAn) w(n — S,) exp (—i27 frAn)

X Z exp (—i2n fAm) w*(m — S,) exp (27 frAm)

- / df Go(f) W (fi — ) expli2n(S, — Sp)A(fi — £)] (A-2)

where we have used the window definition from equation (6). Note that the only
relevant feature of the window is its magnitude-squared value, |W(f)|?, insofar as
the crosscorrelation Cp, is concerned.

All the functions in equation (A-2) have period 1/A in f, except for spectrum
Gz(f), which decays with f (and leads to convergence of the integral). Therefore,
we can express crosscorrelation Cp, in terms of the (double-sided) aliased spectrum

Gu(f) = ;Gx ( f- %) for all f (A-3)
(which also has period 1/A in f) according to
Con= [ 41 Golf) W (i = NI expli2a(S, ~ S~ )] (A-4)
1/A




where we can now integrate over any period of length 1/A. This is an exact result.
Thus, it is always the aliased spectrum G,(f) that governs the statistics of the
spectral estimate Y () in equation (10). This is a natural consequence of process
x(t) being sampled at time increment A, and is not due to the particular method
of spectral analysis employed.*

If the original stationary random process x(t) is prefiltered by an analogue
filter prior to being sampled at time increment A seconds, the frequency components
in G,(f) outside the range —0.5/A to 0.5/ A Hz can be sufficiently suppressed so that
the effects of aliasing are negligible. Thus, although there are always replications of
G(f) in G,(f) at spacing 1/A Hz, through proper prefiltering, their overlap will
be insignificant and aliasing effects can be ignored.

A special case of equation (A-4) is given by the autocorrelation value

Cpp = / df Ga(F) W (fi — PP, (A5)

1/A

which is recognized as the convolution (at analysis frequency fi) of the aliased
spectrum with the magnitude-squared window, the integral being conducted over
any period of length 1/A.

At this point, we assume that the magnitude-squared window |W(f)|? is
narrow enough so that only the value of the aliased spectrum G,(f) at analysis
frequency fi matters in the integral of equation (A-4). That is, the detail in G,(f)
near fi is broader than the window width. Then, we obtain the good approximation

Con = Galti) [ df IW(i = NP exp 2n(5, — S,)Ae — )] (A-6)
/A
The integral in this equation can be simplified by the substitution of the window

definition from equation (6) and the interchange of the integral with the two sum-
mations, yielding the compact result

Cra = % Cal ) 60 (Sy — 55). (AT)

*Sampling x(t) at time increment A causes its power spectrum to be periodically reproduced
with a period of 1/A. If A is not small enough, these repetitions will overlap, causing aliasing.



where ¢,, is the autocorrelation of the weight sequence:

Zw *(n—m) forallm. (A-8)

In particular, equation (A-7) yields Cpp = % Ga(fx) $(0) for 1 <p < P.

We can now address the statistics of power spectral estimate Y (f;) in equa-
tion (10). By use of equation (A-1), we have the mean value

AV{Y (f)} = 5 Zcpp Ga(fr) $u(0). (A-9)

This result holds regardless of the statistics of process x(t); that is, z(t) need not be
Gaussian. Since the absolute scaling is arbitrary, we can select ¢,,(0) = A so that
the mean value equals the desired quantity, namely, spectral value G,(fi). Then,
estimate Y (fi) would be unbiased.

To evaluate the variance of Y (f;), we need to assume that the random vari-
ables {y,(f¢)} in equation (9) are zero-mean Gaussian; this would happen, for
example, if input process z(t) were zero-mean Gaussian. The mean square value of
Y (fi) is then given by

Y2(fi) = Z TRTATRTS

p,g=1
P

1
=55 O (V50,9 + U9, 90 + 0,0, 030,) (A-10)
p,q=1

where we have used the Gaussian character of {y,}. The first term in equation
(A-10) leads to the square of the mean value in equation (A-9). The second term
in equation (A-10) is approximately zero, as may be confirmed by conducting an
analysis similar to that of equation (A-2) for Y,Y,; instead of a magnitude-squared
window, we obtain two displaced windows, W( fe = YW (fr + f), which are widely
spaced in frequency (except when f} is equal to a multiple of the Nyquist frequency
élz), thereby resulting in a small output. The third term in equation (A-10) therefore
leads to the variance in the form

Var{Y (fe)} = 53 Z 1Coal* = 25 i’;) E 6w (S — Sp) (A-11)
pg=1 pg=1




where we have used equation (A-T7).

The EDF, defined in equation (11), is now available from equations (A-9)
and (A-11) as

2
EDF = 2P (A-12)

P
Pu( S Sp)
2

where the exact values of the aliased spectrum G,(f%), the particular analysis fre-
quency fr, and the sampling increment A have canceled out. Thus, the relative
stability of the power density spectrum estimate Y'(fi) (of the aliased spectrum)
depends only on the shape (not the level) of the weight sequence {w(n)} and integer
parameter values NV, T', and P. The P integer shifts {S,} are given by equations (7)
and (8), and depend on the particular number of pieces, P, being considered; see
figures 1 and 2 for the method of data processing used here.




APPENDIX B
SOME BANDWIDTH MEASURES FOR DISCRETE WEIGHTING

Various bandwidth measures corresponding to a time-limited weighting func-
tion are possible for the window. Here, we will consider three different measures and
show how simply they can be computed directly from a set of discrete-time weights
without having to compute the frequency domain window itself.

We presume a real and even set of weights {w,}, such that w_, = w,; this
is different from the weights in the main text, which were one sided and ranged
from w(0) to w(N —1). The total number of nonzero weights is N, which is an odd
number here. For time sampling increment A, the corresponding window is

W(f) =) wnexp(—i2nfAn) forall f, (B-1)

which has period 1/A in frequency f. Also, W(f) is even and real for all f. For
future use, we define the Nyquist frequency F' = 1/(2A), which is halfway to the
first aliasing lobe at fs = 1/A.

The first bandwidth measure is the effective bandwidth f., defined as the
single-sided (positive frequencies) quantity

F 2 E 2
( [ de(f)) (_IF df W(f))
fe= (;; = Ia . (B'z)
0fdf W(f)? 2_@ df W(f)?

However, these integrals can be expressed in the weighting domain very simply as

F

/df W(f) = an / df exp(—i27fAn) = %wo , (B-3)

1/A

-F
F

/df W(f)? = an Wi, / df exp [—i2nfA(n + m)]

_F n,m

1/A

=%anw_n=—i—2wﬁ. | (B-4)

B-1




Substitution in equation (B-2) yields

1wk

n

(B-5)

Since there are a total of N weights, taken at time increment A, we can define the
weighting time duration as L = NA, leading to the dimensionless product

N w}
2wl
n

Lfe (B'G)

Two additional “rectangular” single-sided bandwidth measures that could
alternatively be used are given, by means of equations (B-3) and (B-4), as

F
=1 _ L _w y
ﬁ—W@Z#Wﬁ 35 S ®-7)
r 2w,
fo= g | WU = 35— B:8)
° ()

Observe that frequency measure f; is the geometric mean of the other two measures;
that is, fi = v/ faf., whether obtained from the frequency domain or the time domain
relations.

An example of these three bandwidth measures for the Dolph-Chebyshev
window, with total number of samples N = 127, is shown below in figure B-1, with
the actual numerical data supplied in table B-1. The values of Lf. are computed
from equation (B-6); the values for Lf; and Lf, are computed from the equations
obtained by substituting L = NA into equations (B-7) and (B-8), respectively:

Lfi = gy, (B9
2w,
Lf, = g——-"———— . (B-10)

()

B-2



We observe in figure B-1 that all three bandwidth measures happen to be equal when
the sidelobe level is approximately -23 dB. (Note that all these ordinate numbers in
figure B-1 would have been twice as large if we had defined double-sided bandwidth
measures in equations (B-2), (B-7), and (B-8).)

There is a reason for the upturn in the Lf, curve for the sidelobe levels
near -20 dB. For deep sidelobe levels, the squared window W?(f) generates most of
its contribution to the integral in equation (B-8) from the mainlobe region about
f = 0. However, for shallow sidelobe levels (e.g., -20 dB), where the mainlobe width
is rather narrow, a significant contribution to equation (B-8) is also made by the
extended sidelobe region. This causes the numerator of equation (B-8) to increase,
even though the mainlobe is becoming narrower. An alternative bandwidth measure,
such as the half-power bandwidth, would not have this upturn for the shallower
sidelobe levels.

Table B-1. The Three Bandwidth Measures Lf,, Lf), and Lf, as a
Function of the Sidelobe Level for the 127-Point Dolph-
Chebyshev Window

dB| Lfe | Lfi | Lfs ||dB| Lfe | Lfi | Lfy

-20 1 0.454 | 0.593 | 0.774 || -52 | 1.338 | 0.977 | 0.714
-22 1 0.575 | 0.625 | 0.678 || -54 | 1.366 | 0.996 | 0.726
-24 | 0.687 | 0.655 | 0.624 || -56 | 1.393 [ 1.015 | 0.739
-26 | 0.784 | 0.683 | 0.596 || -58 | 1.420 | 1.033 | 0.751
-28 |1 0.864 | 0.711 | 0.584 || -60 | 1.446 | 1.051 | 0.764
-30 [ 0.931 | 0.737 | 0.583 || -62 | 1.471 | 1.068 | 0.776
-32 [ 0.988 | 0.762 | 0.588 || -64 | 1.496 | 1.086 | 0.788
-34 | 1.036 | 0.786 | 0.597 || -66 | 1.521 | 1.102 | 0.799
-36 | 1.079 | 0.810 | 0.608 || -68 | 1.545 | 1.119 | 0.811
-38 | 1.118 | 0.833 | 0.620 || -70 | 1.569 | 1.136 | 0.822
-40 | 1.154 | 0.855 | 0.634 || -72 | 1.592 | 1.152 | 0.833
-42 | 1.188 | 0.877 | 0.647 || -74 | 1.615 | 1.168 | 0.844
-44 |1 1.220 | 0.898 | 0.660 || -76 | 1.638 | 1.184 | 0.855
-46 | 1.251 | 0.918 | 0.674 || -78 | 1.661 | 1.199 | 0.866
-48 | 1.281 | 0.938 | 0.687 || -80 | 1.683 | 1.215 | 0.877
-50 | 1.310 | 0.958 | 0.701
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Figure B-1. Bandwidth Measures for the 127-Point Dolph-Chebyshev
Window as a Function of the Sidelobe Level in Decibels
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APPENDIX C
KAISER-BESSEL PROPERTIES FOR CONTINUOUS WEIGHTING

Weighting w(t) = %Io (/3\/ 1-—4¢2/ Lz) for |t| < g; zero otherwise.
sin (AT — 52)  sinh (B~ w2177

= for all f.

Window W (f) =

Effective Bandwidth:

T70] pawer o |
:fode2(f) 2 [df W2(f) 2 [dtw?(t)

ne
2 772d19 cos (8) 12 (B cos8)
0

fe=

Lfe =

Half-Power Bandwidth:

X

I‘;//g 3 = sinh(z) sinﬂh 5 where z = \/m .

Define f; from the equation M‘;/((f(;l)) = 71_5 )

Solve sinh(zp,) _ 1 sinh(p)

Zh v2 B

2 2
B _l'h.

72

for zp. Then, Lfy =

C-1




First Zero Crossing:

2 2
sz=\/6:27r.

Lf. +/B*+m?
2 2

The three bandwidth measures Lf., Lf, and %L f. are listed as a function
of the Kaiser-Bessel parameter 3 in table C-1. These data are also plotted in figure
C-1. Table C-1 and figure C-1 convey the same information for the Kaiser-Bessel
weighting as figure B-1 and table B-1 do for the Dolph-Chebyshev weighting.

Table C-1. The Three Bandwidth Measures Lfe, Lfy, and 1Lf, as a
Function of the Window Parameter 3 for the Kaiser-Bessel
Window

Lfe th '%sz
0.7544 | 0.4966 | 0.5927
0.9398 | 0.5467 | 0.6914
1.1006 } 0.5997 | 0.8095
1.2396 | 0.6516 | 0.9398
1.3634 | 0.7011 | 1.0779
1.4763 | 0.7481 | 1.2211
1.5809 | 0.7928 | 1.3679
1.6789 | 0.8352 | 1.5172
1.7713 | 0.8758 | 1.6682

= © 000 Utk w®
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APPENDIX D
MATLAB CODE TO COMPUTE EDF

This appendix lists the MATLAB code that can be used to compute the

EDF for a given windowing function. This code is available from the authors upon

request.

function [Edf, Fol = edf(W, N, T, Pm)

% edf.m - evaluates the expected degrees of freedom for a given

h
b
)
b
b
b
b
b
pA
b
b
%
b
A

windowing function for various values of the percentage
overlap. The formal parameters are defined as follows.

W - temporal weights (N x 1)

N - size of the FFT

T - total number of data points

Pm - maximum number of pieces to be used

Edf, a Pm x 1 vector, is returned to the calling context,
as well as the corresponding values of the fractionmal overlap
in the Px x 1 vector Fo.

Edf - expected degrees of freedom (Pm x 1)
Fo - fractional overlap (Pm x 1)

% $Id: compute_edf.tex,v 1.2 1996/09/23 07:23:48 hall Exp hall $

Edf = zeros(Pm, 1);
Fo = zeros(Pm, 1);
S = zeros(Pm, 1);
Phi2 = zeros(N, 1);
Ni=N-1;

Phi0 = W’ * W;

P2 = Phi0 * PhiO;
Phi2(1) = 1.0;

for Ks = 1:N1
A =0.0;
for Ns = Ks:Ni1

% dot product of the window W

D-1




A=A+WQ0s +1) * WNs - Ks + 1);
end
Phi2(Ks + 1) = A * A / P2;
end

Edf(1) = 2.0;

% P is the number of pieces of data being used. All of the values
% of EDF for P less than (T/N) are the same because there is no overlap.
for P = (T/N):Pm
Sc=(T-N/ (P -1);
for Ps = 1:P
S(Ps) = round((Ps - 1) * Sc);

end
A =0.0;
for Ps = 1:(P-1)
Sp = S(Ps);
for Qs=(Ps+1):P
Ns = S(Qs) - Sp;
if (Ns < Ni1)
A = A + Phi2(Ns + 1);
end
end
end
Edf(P) =2 * P *x P / (P + 2 x A); % EDF from equation (13)
Fo(P) = max(0, 1 - Sc / N); % FO from equation (12)
end

% end of edf.m

D-2
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